

Supported by





# Longitudinal double-spin asymmetries of inclusive jet and di-jet production at STAR

Maria Żurek for the STAR Collaboration

Lawrence Berkeley National Laboratory | Argonne National Laboratory



## **GLUON HELICITY DISTRIBUTION**

## **STAR spin program goal:**

• Delineate the **spin structure of the proton** in terms of quarks and gluons

#### Tool:

• **Strong interactions** in polarized proton-proton collisions (complementary to DIS measurements)

How do gluon spins contribute to the proton spin?

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$$

## Gluon helicity distribution $\Delta g(x,Q^2)$

x - proton momentum fraction carried by the gluon  $Q^2$  - momentum transfer scale

$$\Delta G = \int_0^1 \Delta g(x, Q^2) \, \mathrm{d}x$$



## RHIC - POLARIZED PROTON COLLIDER



- The only polarized high-energy proton-proton collider
- Polarization: transverse and longitudinal
- Center-of-mass energy for pp collisions:  $\sqrt{s}$  = 62, 200, 500/510 GeV
- Alternating spin configurations bunch by bunch (spacing ~100 ns) and fill by fill (typical duration ~8 hrs)

## Hard scattering processes with control of systematic effects

## LONGITUDINALLY POLARIZED DATASETS

| Year and √s       | STAR <i>L</i> [pb <sup>-1</sup> ] |
|-------------------|-----------------------------------|
| Longitudinal runs |                                   |
| √s = 200 GeV      |                                   |
| 2009              | 25                                |
| 2015              | 52                                |
| √s = 500/510 GeV  |                                   |
| 2009              | 10                                |
| 2011              | 12                                |
| 2012              | 82                                |
| 2013              | 300                               |



The STAR Beam Use Request for Runs 19 and 20, STAR Collaboration

Run overview of the RHIC https://www.rhichome.bnl.gov/RHIC/Runs/

## **SOLENOIDAL TRACKER AT RHIC**

1. Time Projection Chamber + Magnetic Field

 $\Delta \phi = 2\pi, |\eta| < 1, 0.5 T$ 

• PID, tracking, vertex reconstruction

### 2. Electromagnetic Calorimeter

 $\Delta \phi = 2\pi$ , -1<  $\eta$  < 2 Barrel ( $|\eta|$  < 1) and Endcap (1 <  $\eta$  < 2)

Energy measurement, trigger

## 3. Barrel Time of Flight

 $\Delta \phi = 2\pi$ ,  $|\eta| < 1$ 

• PID

## 4. Forward Meson Spectrometer

 $\Delta \phi = 2\pi$ , 2.6 <  $\eta$  < 4

Energy measurement, trigger

# 5. Vertex Position Detector Zero Degree Calorimeter Beam-Beam Counter

Relative luminosity and Minimum Bias trigger

#### 6. Roman Pots

Measurement of forward protons



#### **Characteristics**

- Large acceptance (tracking and calorimetry)
- Good detector for jets
- Upgrades: iTPC, EPD, ETOF, Fwd Upgrade (ongoing)

## **SOLENOIDAL TRACKER AT RHIC**

1. Time Projection Chamber + Magnetic Field

 $\Delta \phi = 2\pi, |\eta| < 1, 0.5 T$ 

PID, tracking, vertex reconstruction

#### 2. Electromagnetic Calorimeter

 $\Delta \phi = 2\pi$ , -1<  $\eta$  < 2 Barrel ( $|\eta|$  < 1) and Endcap (1 <  $\eta$  < 2)

• Energy measurement, trigger

### 3. Barrel Time of Flight

 $\Delta \phi = 2\pi$ ,  $|\eta| < 1$ 

• PII

## 4. Forward Meson Spectrometer

 $\Delta \phi = 2\pi, \ 2.6 < \eta < 4$ 

Energy measurement, trigger

# 5. Vertex Position Detector Zero Degree Calorimeter

**Beam-Beam Counter** 

Relative luminosity and Minimum Bias trigger

#### 6. Roman Pots

Measurement of forward protons



#### **Characteristics**

- Large acceptance (tracking and calorimetry)
- Good detector for jets
- Upgrades: iTPC, EPD, ETOF, Fwd Upgrade (ongoing)

## HOW TO ACCESS ΔG?

At pp collider: access to gluons at leading order  $\rightarrow \frac{\Delta G}{G}$ 

LO for illustration

$$\vec{p} + \vec{p} \rightarrow \text{jet/dijet} + X$$
versus

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} a_{LL}^2}{\sum f_a \otimes f_b \otimes \hat{\sigma}}$$

## Which processes dominate at RHIC?

## What are $a_{LL}$ for these processes?





Cross-section measurements to support the NLO pQCD interpretation of asymmetries

 $\rightarrow$  See talk by D. Kalinkin (STAR), 04/15/2021, 08:18

## STATUS OF AG

## Precision A<sub>LL</sub> from STAR 2009 data



- 1.  $A_{11}$  positive for large  $p_{\tau}$  **positive gluon polarization**
- 2. Included in DSSV and the NNPDF **PDF fits** (NLO)
- These data drive the constraints on ΔG in both fits
- Sensitivity to different x from different rapidity bins

Evidence for **positive gluon polarization** in the x range 0.05 < x < 0.2 and at  $Q^2 = 10 \text{ GeV}^2$ 



Relative contributions of gluons with a given x probed in different jet  $p_{\tau}$  regions

## STATUS OF AG

## Impact of $A_{LL}$ from 2009 data on $\Delta G$



NNPDFpol1.0 – do not include STAR 2009 data NNPDFpol1.1 – include STAR 2009 data



at 
$$Q^2 = 10 \,\text{GeV}^2$$



DSSV – (SI)DIS, BNL-RHIC, prelim. 2005 and 2006 STAR DSSV\* – the final STAR jet results from 2005 and 2006 DSSV New fit – STAR 2009 data included

$$\int_{\mathbf{0.05}}^{\mathbf{1}} \Delta g(x, Q^2) dx = \mathbf{0.20}_{-\mathbf{0.07}}^{+\mathbf{0.06}}$$
  
at 90% C.L.,  $Q^2 = 10 \,\text{GeV}^2$ 

## STATUS OF AG

#### What's next?



Near-term improvements from STAR for x down to 0.02 Deep insight from future measurements at EIC at lower x

• Scaling violation in inclusive DIS: g<sub>1</sub>(x, Q<sup>2</sup>)

## Low-x range

Extend sensitivity to smaller x:

forward rapidity

$$x \propto \exp(-\eta)$$

•  $\sqrt{s} = 510 \text{ GeV data}$ 

$$x \propto 1/\sqrt(s)$$

## **High-x range**

Further precision from:

- Jet and neutral pion probes
- Complementary probes (di-jets)

# JET RECONSTRUCTION



#### **Anti-kT** algorithm via FastJet

Cacciari, Salam, Soyez, Eur. Phys. J. C 72, 1896 (2012) Cacciari, Salam, Soyez, JHEP 04, 063 (2008)

PYTHIA + GEANT + Zero-bias events for embedding

#### Jets reconstructed at three levels:

Detector, particle and parton

#### **Underlying event correction**

 Jet-by-jet underlying event correction using offaxis cone method ALICE, PRD 91 (2015), 112012

Example UE correction values for 2015 data:  $p_T = 6 - 7.1$  GeV/c: avarage UE  $dp_T \sim 0.77$  GeV/c  $p_T = 26.8 - 31.6$  GeV/c: avarage UE  $dp_T \sim 0.6$  GeV/c

Jets corrected back to parton level

#### Trigger bias and reconstruction efficiency

 Estimated using replicas from polarized NNPDF1.1 PDF set

## **DOUBLE-SPIN ASYMMETRY**

## **Asymmetry calculation**

$$A_{LL} = \frac{1}{P_B P_Y} \frac{(N_{++} + N_{--}) - R_3 (N_{+-} + N_{-+})}{(N_{++} + N_{--}) + R_3 (N_{+-} + N_{-+})}$$

 $N_{+/-}$  - number of produced jets N for four different beam helicity configurations

P – polarization (Y – yellow, B – blue beam), e. g. for 2015 data:  $P_B = 0.523 \pm 0.016$ ,  $P_Y = 0.565 \pm 0.017$  CNI Polarimetry Group, https://wiki.bnl.gov/rhicspin/Results

R<sub>3</sub> – relative luminosity calculated using hit information from the Vertex Position Detector (VPD)

$$R_3 = \frac{L_{++} + L_{--}}{L_{+-} + L_{-+}} \qquad \text{Acceptance and efficiency} \\ \qquad \blacktriangleright \\ \qquad R_3 = \frac{N^{++} + N^{--}}{N^{+-} + N^{-+}}$$

• For 2015 data  $R_3$  varies from 0.96 to 1.04 depending on the fill with the uncertainty of  $\Delta R_3 \sim 4.5 \times 10^{-4}$  (Uncertainty similar to 2009 data)

# **INCLUSIVE JET A**<sub>LL</sub>

Largest 200 GeV dataset likely to conclude the 200 GeV longitudinal program with jets

Jet and dijet A<sub>IL</sub> from STAR from 2015 data



- Consistent with 2009 data, which provided first evidence for positive  $\Delta G$  for x > 0.05
- Twice larger figure-of-merit (LP4) with improved systematics
- Parity violating single-spin asymmetries consistent with zero

Will significantly reduce uncertainty on gluon polarization for x > 0.05 once included in global fits

# DI-JET ALL

Di-jets give stricter constraints to underlying partonic kinematics

- May place better constraints on x-dependence of Δg(x,Q²)
- Much narrower ranges of initial state partonic momentum tested
- Different di-jet topologies enhances sensitivity of the data to selected x



## **JETS AND DI-JETS AT 510 GEV**

#### **Towards smaller x**



- Higher √s pushes sensitivity to lower x (down to 0.02)
- Consistent results from both energies



First measurement of jet and di-jet A<sub>LL</sub> at 510 GeV with 2012 data

Further precision: Run 2013 data at  $\sqrt{s}$  = 510 GeV – x 3.7 statistics

## **JETS AND DI-JETS AT 510 GEV**

## **Towards smaller x**



More forward  $\hat{\eta}$  pushes sensitivity to even lower x (down to 0.01)

Further precision: Run 2013 data at  $\sqrt{s}$  = 510 GeV – x 3.7 statistics

## **SUMMARY AND OUTLOOK**

- 1. Insight into gluon polarization  $\Delta g(x,Q^2)$  at STAR
  - Through longitudinal double spin asymmetries of inclusive jets and di-jets
- 2. 2009 data at  $\sqrt{s}$  = 200 GeV PRL 115 (2015) 9, 092002 included in global perturbative QCD analysis provided **evidence for positive gluon polarization** for x > 0.05
- 3. New results on inclusive jets and dijets  $A_{LL}$  from 2015 dataset at 200 GeV
- The most precise 200 GeV dataset with twice larger figure-of-merit than that from 2009 and with improved systematics
- Likely to conclude the 200 GeV longitudinal program with jets
- Among the most impactful results on  $\Delta g(x,Q^2)$  available before the Electron-Ion Collider comes online
- 4. Gluon polarization at **smaller x** (x < 0.05)
  - Improvements from STAR at 510 GeV and more forward rapidity
  - Deep insight from future measurements at EIC